MATH 245 F16, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction theorem, Uniqueness Proof theorem, proof by strong induction, Set S is well-ordered by $<$.
The Proof by Contradiction theorem says that for propositions p, q, if $p \wedge \neg q$ is false, then $p \rightarrow q$ is true. The Uniqueness Proof theorem says that if for all x, y in domain $D, P(x) \wedge P(y) \rightarrow x=y$, then predicate P holds for at most one x in the domain. To prove the proposition $\forall x \in \mathbb{N}, P(x)$ by strong induction, we need to prove that $P(1)$ is true (base case), and that for any $k \in \mathbb{N}$, that $P(1) \wedge P(2) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$. (inductive case). Set S is well-ordered by $<$ if every subset of S contains an element that is minimal with respect to $<$.
2. Carefully define the following terms: recurrence, $a_{n}=\Theta\left(b_{n}\right), S=T$ (for sets $\left.S, T\right), S \cup T$ (for sets S, T).

A recurrence is a sequence of numbers, all but finitely many of whose terms are defined in terms of its previous terms. $a_{n}=\Theta\left(b_{n}\right)$ means that $a_{n}=O\left(b_{n}\right) \wedge a_{n}=\Omega\left(b_{n}\right) . S=T$ if the sets S, T contain exactly the same elements. $S \cup T$ is the set $\{x: x \in S \vee x \in T\}$.
3. Let $n \in \mathbb{Z}$. Prove that $\frac{(n+1)(n-2)}{2} \in \mathbb{Z}$.

We apply the division algorithm to $n, 2$ to get $q, r \in \mathbb{Z}$ with $n=2 q+r$ and $0 \leq r<2$. The proof continues in two cases. If $r=0$ then $\frac{(n+1)(n-2)}{2}=(n+1) \frac{2 q+0-2}{2}=(n+1)(q-1) \in \mathbb{Z}$. If instead $r=1$ then $\frac{(n+1)(n-2)}{2}=$ $(n-2) \frac{2 q+1+1}{2}=(n-2)(q+1) \in \mathbb{Z}$.
4. Use mathematical induction to prove that $\forall n \in \mathbb{Z}$ with $n \geq 3,2^{n}>5$.

Base case: $n=3.2^{n}=8>5$, done.
Inductive case: Let $n \in \mathbb{Z}$ with $n \geq 3$, and assume that $2^{n}>5$. Multiply both sides by 2 to get $2^{n+1}=2 \cdot 2^{n}>$ $2 \cdot 5=10>5$. Hence $2^{n+1}>5$.
5. Suppose that an algorithm has runtime specified by the recurrence relation $T_{n}=n^{1 / 2} T_{n / 2}+2$. Determine what, if anything, the Master Theorem tells us.
Applying the Master Theorem, we find $a=n^{1 / 2}, b=2, c_{n}=2$. Since a is not a constant, then the Master Theorem does not apply. It tells us nothing.
6. Let S, T be sets with $S \cap T=S$. Prove that $S \subseteq T$.

Let $x \in S$. Since $S \cap T=S, S$ and $S \cap T$ have the same elements; in particular, $x \in S \cap T$. Hence $x \in S \wedge x \in T$. By simplification, $x \in T$. This proves that $S \subseteq T$.
7. Let S be a set. Prove that $S \backslash \emptyset=S$.

Let $x \in S \backslash \emptyset$. Then $x \in S \wedge x \notin \emptyset$. By simplification, $x \in S$. This proves that $S \backslash \emptyset \subseteq S$.
Now, let $x \in S$. Also, $x \notin \emptyset$, since \emptyset contains no elements. Hence, by conjunction, $x \in S \wedge x \notin \emptyset$. Thus $x \in S \backslash \emptyset$. This proves that $S \subseteq S \backslash T$.
8. Let $x \in \mathbb{R}$. Prove that $2\lfloor x\rfloor \leq\lfloor 2 x\rfloor \leq 2\lfloor x\rfloor+1$.

Since $x \geq\lfloor x\rfloor$, we have $2 x \geq x+\lfloor x\rfloor$. By Theorems 5.16 and 5.17 , we have $\lfloor 2 x\rfloor \geq\lfloor x+\lfloor x\rfloor\rfloor=\lfloor x\rfloor+\lfloor x\rfloor=2\lfloor x\rfloor$. This proves the first inequality.
Since $x<\lfloor x\rfloor+1$, we have $2 x<x+\lfloor x\rfloor+1$. By Theorems 5.16 and 5.17 , we have $\lfloor 2 x\rfloor \leq\lfloor x+\lfloor x\rfloor+1\rfloor=$ $\lfloor x\rfloor+\lfloor x\rfloor+1=2\lfloor x\rfloor+1$. This proves the second inequality.
9. Let $x \in \mathbb{R}$ with $x>-1$. Prove that $\forall n \in \mathbb{N}_{0},(1+x)^{n} \geq 1+n x$.

We use (shifted) induction on n. Base case: $n=0 .(1+x)^{0}=1 \geq 1+0 x$, as desired.
Inductive case: Let $n \in \mathbb{N}_{0}$ with $(1+x)^{n} \geq 1+n x$. We multiply both sides by $(1+x)$; since this is positive the inequality is preserved. The result is $(1+x)^{n+1}=(1+x)(1+x)^{n} \geq(1+x)(1+n x)=1+n x+x+n x^{2} \geq 1+n x+x=$ $1+(n+1) x$.
10. Prove that $3^{n} \neq O\left(2^{n}\right)$.

We use proof by contradiction. Suppose that $3^{n}=O\left(2^{n}\right)$. Then there are $n_{0} \in \mathbb{N}$ and $M \in \mathbb{R}$ such that for all $n \geq n_{0},\left|3^{n}\right| \leq M\left|2^{n}\right|$. Set $m=\log _{3 / 2} M$, and take some $n>\max \left\{n_{0}, m\right\}$. Since $n>n_{0}$, we have $3^{n} \leq M 2^{n}$, which rearranges to $(3 / 2)^{n} \leq M$. But also, since $(3 / 2)^{x}$ is an increasing function of x, we have $(3 / 2)^{n}>(3 / 2)^{m}=$ $(3 / 2)^{\log _{3 / 2} M}=M$. This is a contradiction.

